

Indian School Al Wadi Al Kabir Second Rehearsal Examination (2024-2025)

Class: XII Subject: Chemistry (043) Max. marks: 70 Date: 02/02/2025 SET I Time: 3 Hours

1.	(B) 2 and 3	1
2.	(C) Dry cell	1
3.	(B) On oxidation with nitric acid, glucose yields saccharic acid.	1
4.	(C) CH ₃ CH ₂ CH ₂ NH ₂	1
5.	(A) 20 minutes	1
6.	(A) S _N 1 reactions	1
7.	(D) 2,4,6-Trinitrophenol	1
8.	(D) Cross-Aldol condensation	1
9.	(A) $t_{2g}^{4} e_{g}^{0}$	1
10.	(B) Scandium	1
11.	(C) +3	1
12.	(D) S _N 2 reaction	1
13.	(C) A is true but R is false.	1
14.	(D) A is false but R is true.	1
15.	(A) Both A and R are true and R is the correct explanation of A	1
16.	(D) A is false but R is true.	1
17.	 a) Ethanol-water forms an azeotropic mixture. b) Two solutions having same osmotic pressure at a given temperature are called isotonic solutions. Eg: - Fluid inside the blood cell and 0.9% (mass/ volume) sodium chloride solution. 	1 1/2 1/2
	OR	
	a) At a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas. Any one application.	1/2
	b) No effect	1/ ₂ 1/ ₂

	Both solids and liquids are highly incompressible.	
18.	$\Lambda_{m} (S \text{ cm}^{2} \text{ mol}^{-1}) = \frac{\kappa (S \text{ cm}^{-1}) \times 1000 (\text{cm}^{3}/\text{L})}{\text{molarity (mol/L)}}$ $= \frac{8 \times 10^{-5}}{2 \times 10^{-3}} \times 1000 \text{ S cm}^{2} \text{ mol}^{-1}$	1/2
	$\alpha = \frac{A_{\rm m}}{A_{\rm m}^2}$	1/2
	= 40/420 = 0.095	1
19.	Consider a zero-order reaction, $R \to P$ $Rate = -\frac{d[R]}{dt} = k[R]^0$ As any quantity raised to power zero is unity $Rate = -\frac{d[R]}{dt} = k \times 1$ $d[R] = -k \ dt$ Integrating both sides $[R] = -k \ t + I$ where, I is the constant of integration. $At \ t = 0, [R] = [R]_0, \text{ where } [R]_0 \text{ is initial concentration of the reactant.}$ $[R]_0 = -k \times 0 + I$ $[R]_0 = I$ Substituting the value of I $[R] = -kt + [R]_0$ On re-arranging, $k = \frac{[R]_0 - [R]}{t}$	2
20.	a) When heated with Fehling's reagent, Methanal gives a reddish-brown precipitate whereas Benzaldehyde doesn't.b) When heated with iodine and NaOH, Pentan-2-one gives yellow precipitate of iodoform whereas Pentan-3-one doesn't.	1
21.	a) CH(Br)CH ₃	1

	b)	1
22.	$\Delta T_{\rm b} = \frac{i}{M_2 \times W_1} \frac{K_{\rm b} \times 1000 \times W_2}{M_2 \times W_1}$	1/2
	$\Delta T_{\rm b} = \frac{i}{M_2 \times M_1} \frac{K_{\rm b} \times 1000 \times W_2}{M_2 \times W_1}$	
	$i = 2$ $T_{\rm b} - T_{\rm b}^{0} = \frac{2 \times 0.52 \times 4 \times 1000}{120 \times 100}$	1/2
	$T_{\rm b} - 373 \; {\rm K} = 0.346 \; {\rm K}$	1
	$T_{\rm b} = 373.346 {\rm K}$	1
	or	
	= 373.496 K	
23.	a) i) $C_6H_5NH_2 < (CH_3)_2NH < CH_3NH_2$	1/2
	ii) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$	1/2
	b) i) Due to resonance stabilisation of diazonium salts of aromatic amines.	1
	ii) $ \stackrel{+}{N=N} \stackrel{-}{Cl} + H \stackrel{-}{\longrightarrow} NH_2 \stackrel{\bar{O}H}{\longrightarrow} N=N \stackrel{-}{\longrightarrow} NH_2 $	1
24.	a) i) Due to –I and +R effect in chlorobenzene, net dipole moment is lower than	1
	that of cyclohexyl chloride in which net dipole moment is due to –I effect	
	only / sp ² hybridised carbon in chlorobenzene is more electronegative and	
	C-Cl bond length is shorter as compared to sp ³ hybridized carbon in cyclohexyl chloride.	
	ii) Due to branching, t-butyl bromide has less surface area and weaker van der Waal forces than n-butyl bromide.	1
	b) 1-Bromo-2,2-dimethylpropane < 1-Bromo-2-methylbutane < 1-Bromo-3-methylbutane	1
	OR	
	a) i) CH ₃ CH ₂ CH ₂ Br CH ₃ CH ₂ CH ₂ I A B	$\frac{1}{2} + \frac{1}{2}$

		14 + 14
	ii) MgBr	$\frac{1}{2} + \frac{1}{2}$
	A B	
	b)	1
25.	a) i) Potassium hexacyanidochromate(III)	1
	ii) Hybridization is d ² sp ³ and shape is octahedral.	$\frac{1}{2} + \frac{1}{2}$
	b) (NH ₄) ₂ [Co(H ₂ O) ₂ F ₄]	1
26.	a)	
	i) NH ₂ NH ₂	1/2 + 1/2
	A) (B) Br	
	 Br	
	ii) (A) CH ₃ CH ₂ NH ₂ (B) CH ₃ CH ₂ NHCOCH ₃	$\frac{1}{2} + \frac{1}{2}$
	b) $NH_3 \longrightarrow NH_2$ $NAOBr \longrightarrow NH_2$	1
27.	a) On addition of BaCl ₂ solution, [Co(NH ₃) ₅ Cl]SO ₄ forms a white precipitate of BaSO ₄ while [Co(NH ₃) ₅ (SO ₄)]Cl does not.	1
	b) In [Ni(CO) ₄], Ni is in zero oxidation state whereas in [NiCl ₄] ²⁻ , it is in +2 oxidation state. In the presence of CO ligand, the unpaired d electrons of nickel pair up but Cl ⁻ being a weak ligand is unable to pair up the unpaired electrons.	1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	cis- $[CrCl_2(ox)_2]^{3-}$ trans- $[CrCl_2(ox)_2]^{3-}$	
28.	а) н,с он	1

	b) $\stackrel{\tilde{N}_2\tilde{C1}}{\longrightarrow}$ + $_{12}\tilde{O}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$	1
	+ HI - + CH ₃ I	1
29.	a) DNA has a double strand while RNA has single stranded.	1+1
	DNA has 2-Deoxyribose sugar moiety while RNA has ribose sugar moiety.	
	(or any other points)	
	b) (C) Tertiary	1
	c) (B) doesn't contain a chiral carbon	1
	OR	
	(B) Rickets	
30.	a) $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[Mg2+]}{[Cu2+]}$ $= 2.71V - \frac{0.0591}{2} \log \frac{[0.1]}{[0.01]}$	2
	= 2.71 V - 0.0295 × 1 = 2.68 V	
	b) Q = It	
	t = 96.5 s	1
	OR	
	b) Anode: $Zn(Hg) + 2OH^- \longrightarrow ZnO(s) + H_2O + 2e^-$ Cathode: $HgO + H_2O + 2e^- \longrightarrow Hg(l) + 2OH^-$	
	c) + 0.74 V	1
31.	a) i) Cr, due to half-filled t ₂ g configuration of Cr ³⁺	1
	ii) Cr, due to maximum number of unpaired electrons.	1
	iii) Cu, as Cu ⁺ has a stable completely filled (3d ¹⁰) configuration.	1
	b) Due to relatively poor shielding effect of 5f electrons in actinoids than 4f electrons in lanthanoids.	1
	c) i) 2 ii) 4	1/2 + 1/2
	OR	
	a) The overall decrease in atomic and ionic radii from La to Lu is known as lanthanoid contraction.	1

	Atomic radii of second and third transition series are very similar.	1
	b) i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	ii) $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$	1
	iii) $2Cu^{2+} + 4I^{-} \rightarrow Cu_2I_2 + I_2$	1
32.	a) Order of reaction with respect to A is 2 and B is 1	1+1
	b) Rate = $k [A]^2 [B]$ and overall order of reaction is 3	1
	c) Rate constant, $k = 1.33 \text{ mol}^{-2}L^2s^{-1}$	1
	d) 0.16 molL ⁻¹ s ⁻¹	1
	OR	
	a) $\log \frac{k2}{k1} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$	1/2
	$\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 J K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] \text{K}^{-1}$	
	$\log 3 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$	
	$0.4771 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{20}{300 \times 320} \right]$	1/2
	Ea= 43855 J mol ⁻¹ or 43.855 kJ mol ⁻¹	2
	b) k = (2.303 / 40) log (100 / 75)	1/2
	= 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹	1/2
	t = (2.303 / 0.0071) log (100/20)	
	t =230 min or 226.7min or 223.7 min.	1
22		
33.	a) A: 2-Methylbut-2-ene / CH ₃ CH=C(CH ₃) ₂	1
	B: Ethanal / CH ₃ CHO	1
	C: Propanone / CH ₃ COCH ₃	1
	b) i) CH ₃ CH ₂ CH ₃	1
	ii) (CH ₃) ₃ CCH ₂ OH + (CH ₃) ₃ CCOONa	1
	OR	
	a) i) $CH_3 Br \xrightarrow{KCN (alc.)} CH_3CN \xrightarrow{H_2O} CH_3COOH \xrightarrow{LiAlH_4 / Ether or B_2H_6} CH_3CH_2OH$	1

ii) CH ₃ CN (i) CH3MgBr (ii) H2O / H+ CH ₃ COCH ₃	1
iii) CH ₃ -CH ₂ -CHO KMnO ₄ CH ₃ - CH ₂ - COOH (1) Cl ₂ / P ₄ CH ₃ -CH-COOH H (2)NaOH (aq) OH	1
b) i) CH ₃ CH ₂ CH(OCH ₃) ₂	1
ii) CH ₃ CH ₂ CH(OH)CH(CH ₃)CHO	1